Aerosol Life Cycle

Leader: John Seinfeld Rapporteur: Cathy Chuang February 27, 2009

Major Conclusion

- 1. Models must move toward predicting aerosol size and composition.
 - Aerosols are multi-dimensional; size and composition are of first-order importance in aerosol life cycles.
- Emissions are poorly characterized with respect to aerosol size distribution and volatility. Need methodologies to prepare emission inventories for models that treat aerosol mass and size distribution.
- 3. The relative importance of nucleation as a source of particle number is not well constrained. Critical interest is in particles that grow to ~ 50 nm.

Major Conclusion (cont.)

- 4. Representation of wet removal in atmospheric models has been focused on highly soluble sulfate aerosols. This needs to be revisited for more complex aerosols.
 - Can a taxonomy of CCN classes be developed?
- 5. Cloud processing
 - Is cloud processing a significant source of new particle formation?
 - What is the contribution of cloud processing to production of SOA?

SOA Modeling

Major Conclusion (cont.)

- 6. A fundamental understanding of processes governing aerosol size and composition is needed.
- 7. Inverse modeling
 - Useful for evaluating emission distributions
 - Needs to be developed for aerosols in models